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An examination of statistical theories for 
fibrous materials in the light of 
experimental data 

A. S. WATSON,  R. L. S M I T H *  
Department of Mathematics, Imperial College, London SW7 2BZ, UK 

We have analysed experimental data on the tensile strength of carbon fibres and 
bundles of parallel carbon fibres. These data are used to assess whether theoretical 
relations between the strengths of fibres and different kinds of bundles are consist- 
ent with experiment. The analysis confirms the presence of a hybrid effect, and also 
that the classical Weibull relations between strength and length are not apparently 
satisfied for bundles. It is suggested that the latter observation might be an effect 
of the random variation of fibre diameter, and some consequences of this are 
examined. 
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1. I n t r o d u c t i o n  
There has been much interest in recent years in 
statistical theories for the strength of fibrous 
materials. The theory of loose bundles of fibres 
originated with Daniels [1]. A theory of unidirec- 
tional fibrous composites was started with the 

*To whom correspondence should be addressed. 

papers of Rosen [2] and Zweben [3]. A particular 
model was examined in detail by Harlow and 
Phoenix ([4, 5] and references therein) and in a 
different way by Smith [6]. Smith et al. [7] 
combined these ideas to propose a general 
method for calculating approximate failure 
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TAB L E I Summary of data 

Sample Type Length 
(ram) 

Number of- Sample Sample 
observations mean standard 

(GPa) deviation 
(GPa) 

1 Single fibres 1 
2 10 
3 20 
4 50 

5 Dry bundles 5 
6 20 
7 100 
8 200 

9 Impregnated bundles 20 
10 50 
11 150 
12 300 

13 Hybrid bundles 20 
14 50 
15 100 
16 200 

57 4.24 0.85 
64 3.05 0.62 
70 2.45 0.49 
66 2.25 0.41 

28 1.92 0.07 
25 1.68 0.10 
29 1.58 0.13 
27 1.38 0.11 

28 2.82 0.I6 
30 2.81 0.17 
32 2.68 0.19 
29 2.50 0.23 

168 3.71 0.17 
68 3.64 0.19 
34 3.59 0.17 
17 3.54 0.16 

probabilities, and studied its mathematical justi- 
fication in detail. Batdorf [8] proposed similar 
approximations. The statistical aspects of com- 
posite strength have also been examined by 
Bader and co-workers [9 12]. Batdorf and 
Ghaffarian [13] compared Batdorf's theoretical 
prediction with limited experimental data, but 
experimental and theoretical comparison has 
otherwise been lacking. Our purpose here is to 
make a more detailed comparison of some 
experimental data and to compare the results 
with theoretical predictions. 

The data we examine are those of Bader and 
Priest [9], based on experiments which they con- 
ducted at Surrey University. A summary is in 
Table I. There are sixteen samples, consisting of 
four types of bundles each tested at four dif- 
ferent gauge lengths. The four types are (a) 
single carbon fibres, (b) dry bundles of parallel 
carbon fibres, (c) impregnated tows of parallel 
carbon fibres in an epoxy resin matrix, (d) 
hybrid bundles consisting of tows of carbon 
embedded in a glass-fibre/epoxy laminate. In 
each case the failure load under tension was 
measured in an Instron testing machine, and the 
failure stress computed from that. For types 
(a)-(c), the tests were repeated independently 
with fibres of different lengths. For type (d), the 
tests were carried out on single specimens of 
length 200 mm, and these specimens notionally 
divided up to obtain data for shorter gauge 

lengths. Bader and Priest [9] provide much more 
experimental detail. 

For the study of single fibres, a key concept is 
the "weakest-link" hypothesis that the strength 
of a fibre can be represented as a minimum of 
statistically independent strengths of sections of 
the fibre. It was this notion which led Weibull 
[14] to postulate the now well known distri- 
bution which bears his name. In spite of its wide 
application, the weakest-link hypothesis does 
not seem to have been tested very much with 
experimental data. In Section 2, we compare 
various distributions for the strength of single 
fibres. 

In dry bundles, the fibres are arranged in 
parallel with no physical binding present. It 
therefore seems reasonable to postulate that the 
applied load is spread equally over the surviving 
fibres. The first detailed analysis of this model 
was due to Daniels [1]; McCartney and Smith 
[15] have given a recent review. In Section 3, we 
compare the theoretical results given in those 
papers with the data. 

The remainder of the paper is concerned with 
composites, and takes the form of a comparison 
between the data for impregnated and hybrid 
composites and the theory developed in Smith 
et al. [7]. In Section 4, we summarize the main 
features of this theory. The results are then 
applied to the impregnated and hybrid bundles. 
For the former, there appears to be good 
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agreement between theory and experiment. The 
hybrid bundles, however, are rather stronger 
than the theory would predict. This so-called 
hybrid effect has been noted by a number of 
earlier authors, but still does not seem to be fully 
explained. 

The theory of Section 4 assumes that the 
notion o f  a weakest-link effect in large systems is 
appropriate for bundles as well as for single 
fibres. This assumption itself appears highly 
questionable. In Section 5, we consider an 
extension to the basic model, allowing for the 
random variation in fibre diameters. This goes 
some way towards explaining the earlier results 
but still leaves questions to be answered. 

2. Single fibres 
Let F(y;  L) denote the probability that a fibre of 
length L fails under tensile stress y. The weakest- 
link hypothesis may be expressed in the form 

1 - F ( y ; L l  + L 2 )  = [1 - F ( y ; L , ) ]  

x [1 - F(y; L2)] (1) 

for positive y, L] and L2. One solution to Equa- 
tion 1 is 

f ( y ;  L) = 1 - exp { - L [ ( y  -- #)/yt]O}. 

(2) 

for constants # ~> 0, Yt > 0, 0 > 0. The corre- 
sponding density is f ( y ;  L) = (O/Oy)F(y; L). 
This was obtained by Weibull [14], though a 
more precise justification as one of the three 
limiting distributions of extreme value theory 
was given earlier by Fisher and Tippett [16]. This 
distribution is very widely used as a statistical 
model for the strengths of materials. In many 
applications p is taken to be zero. 

An alternative way of writing this theory (with 
# = 0) is in the form 

F(y; L) = 1 - exp [--(y/yL) ~ 

L > O, y > 0 (3) 

together with the relations 

Or = 0 Yr = L-t/~Yt (4) 

The first question we wish to address is 
whether the data actually support the weakest- 
link hypothesis for single fibres. Our approach 
to this problem will be to assume the Weibull 
distribution Equation 3 for each gauge length, 

and then to decide whether the parameters QL, YL 
satisfy Equation 4. A graphical analysis on these 
lines was, in effect, carried out by Bader and 
Priest, but the difficulty of deciding whether the 
departures from Equation 4 are significant 
suggests the need for a more formal method of 
analysis. Our analysis will be based on the 
method of maximum likelihood. 

The likelihood function for the model of  
Equations 3 and 4 may be written in the form 

I(Q, y]) = I~I f(Y~; Li) (5) 
i = l  

where we have assumed a sample in n fibres, the 
ith being of length L~ and having failure stress Y~. 
Numerical maximization of l defines the 
maximum likelihood estimators Q, Yr. The 
inverse of the Hessian matrix of  - l o g  1(0, Yt) 
provides an estimate of the covariance matrix of 
the estimators. In particular, the square roots of 
the diagonal elements of that matrix are the 
standard errors of Q and Yl. Kendall and Stuart 
[17] is a standard reference on statistical theory 
including maximum likelihood. 

For the data in question (Samples 1 -4 ) ,  this 
procedure leads to estimates Q = 5.6, Yt = 4.8 
with standard errors 0.2, 0.1 respectively. The 
standard error of an estimate is a measure of the 
uncertainty of that estimate due to sampling 
variation. In most practical cases the sampling 
distribution of an estimate is close to the normal 
distribution, in which case an approximate 95% 
confidence interval for the parameter has a 
width of four standard errors. In this case, for 
example, approximate 95% confidence intervals 
for 0 and Yt are (5.2, 6.0) and (4.6, 5.0) respect- 
ively. Bader and Priest obtained Q = 5.8 by 
averaging the four values from individual 
samples. 

Now we propose a method to test the validity 
of Equation 4. We assume the validity of  Equa- 
tion 3 for each L, and test the hypothesis that the 
parameters YL, 0L satisfy Equation 4. Let l0 and 
Ii respectively denote the maximum values of  the 
likelihood function Equation 5 when the par- 
ameters QL, Yr satisfy Equation 4 and when they 
are unconstrained. In this calculation, to obtain 
l], the likelihood function Equation 5 is maxi- 
mized separately for each of the four sub- 
samples, the product of the four maximized 
likelihoods being lt. Of course It > 10 and the 
magnitude of It/lo provides a test of the Equation 
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T A B  LE II Parameter estimates and maximized log likelihoods under weakest-link hypothesis 

Type y~ or y~" Standard 0 or Q* Standard log l0 
error error 

Single fibres 4.77 0.08 5.58 0.18 - 229.1 
Dry bundles 2.16 0.03 14.75 0.81 70.5 
Impregnated bundles 3.55 0.06 18.66 1.23 21.7 
Hybrid bundles 4.31 0.02 26.4 1.09 73.3 

4. The appropriate test (which is justified by 
asymptotic theory) is to reject Equation 4 if 

2 2 2 log (ll/lo) > Z6.,, where Zv.~ denotes the upper 
a-point of the distribution ~2. Here 1 - ~ is the 
level of significance which must be set by the 
statistician and the number v = 6 arises because 
this is the number of degrees of freedom 
imposed by the constraint Equation 4 when 
there are samples at four diffent gauge lengths. 

For these data we find 21og(ll/lo) = 18.0, 
whereas ~,0.01 = 16.81. Formally, the hypoth- 
esis of Equation 4 is rejected at the 99% level of 
significance. Thus we are led to question whether 
the weakest-link hypothesis is, in fact, an appro- 
priate assumption. 

The same procedures were applied to the three 
types of bundles as well, with results given in 
Tables II and III. The X 2 values were 50.4, 28.0 
and 40.9 for the dry, impregnated and hybrid 
bundles, whereas X2.0.00~ = 22.46. Thus, in all 
three cases, the hypothesis of Equation 4 is 
rejected at a significance level considerably 
greater than 99.9%. This constitutes fairly 

strong evidence against the weakest-link 
hypothesis for bundles of fibres. 

The weakest-link hypothesis has been a well 
established feature of statistical theories of 
strength, so the results so far are rather hard to 
explain. From another point of view, Equation 
4 still has good predictive power, as shown in 
Table IV. In this table we compare YL from 
Table III, i.e. the parameter obtained just from 
the fibres of length L, with a number ypred defined 
to be 

ypred = yj L-l/~ (6) 

where ~ and Yl are taken from Table II. The 
discrepancy between YL and ypr~d is never more 
than 5%, and in most cases lower. This suggests 
that, although there is statistical evidence 
against Equation 4, from a practical point of 
view the weakest-link relation may be justified. 
In later sections we shall consider these matters 
further. 

The likelihood ratio test used here is only one 
of several formal tests available for choosing 
between models, but in moderately large 

T A B  L E III  Parameter estimates and maximized log likelihoods for individual data sets 

Sample YL 0L Maximum log log / l 2 log (l I/l o) 
likelihood 

1 4.58 5.6 -- 71.0 
2 3.31 5.0 -- 63.0 
3 2.65 5.5 -- 49.9 220.1 17.8 
4 2.42 6.0 -- 36.2 

5 1.95 30.8 34.7 
6 1.72 20.9 23.1 
7 1.64 13.7 17.8 95.7 50.4 
8 1.44 13.8 20.1 

9 2.90 20.8 I 1.8 
10 2.88 20.3 11.0 
11 2.76 19.0 10.9 35.8 28.0 
12 2.61 12.9 2.0 

13 3.79 24.1 55.3 
14 3.72 22.8 19.2 
15 3.67 24.5 12.0 93.7 40.8 
16 3.61 26.0 7.2 
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TABLE IV Weakest-link discrepancy. Comparison of 
ypr~ = L-i/Qy I (Q, Yl from Tabte II) with YL (Table III) 

Type Length yPr ~d YL Y~red /YL 

Single fibres 1 4.77 4.58 1.04 
10 3.16 3.31 0.95 
20 2.79 2.65 1.05 
50 2.37 2.42 0.98 

Dry bundles 5 1.94 1.95 0.99 
20 1.76 1.72 1.02 

100 1.58 1.64 0.96 
200 1.51 1,44 1.05 

Impregnated bundles 20 3.02 2.90 1.04 
50 2.88 2.88 1.00 

150 2.71 2.76 0.98 
300 2.62 2.6l 1.00 

Hybrid bundles 20 3.84 3.79 1.0I 
50 3.71 3.72 1.00 

100 3.61 3,67 0.98 
200 3.52 3.61 0.97 

samples it makes little difference which one is 
chosen. Some comparison with graphical 
methods of  assessment will be made in Section 
4.3. 

Maximum likelihood has also been used to fit 
two other distributions, in an effort to decide 
whether any other distribution fitted the data 
better than Equation 3. The three-parameter 
Weibull distribution (Equation 2) was fitted 
separately to all sixteen samples. A wide range of  
values of  #, was found, and in only two cases 
was the fit a significant improvement  over the 
two-parameter  fit, as assessed by the likelihood 
ratio test. Overall it seemed that there was no 
evidence in favour of  this distribution. 

Similar conclusions were reached for the 
"double-humped" Weibull distribution 

F(y;  L) = 1 -- exp [-- (y/yL) ~ --  ( y /y 'L )  ~'] 

y > 0 (7) 

which has been suggested as an improvement  on 
the standard Weibull distribution; see Harlow 
and Phoenix [4] for discussion. In every case, 
maximum likelihood estimation resulted in 
either Q = 4' or that one of  the two shape par- 
ameters is effectively + ~ ;  in either case the 
distribution reduces to the standard Weibull 
form. It  should be pointed out that  there are 
some theoretical difficulties over the application 
of  maximum likelihood theory in this case 
because o f  the degeneracy at Q = 0', but we still 
believe that there is no evidence in the present 

data to justify this distribution. Further details 
concerning both this and the three-parameter 
Weibull distributions were given by Watson [18]. 

3. Dry bundles 
We treat the dry bundles as following Daniels '  
[1] model, the key feature of  which is that the 
load is shared equally over the fibres in any 
configuration of  failed and surviving fibres. 
Notat ion follows McCartney and Smith [15]. 

Daniels '  basic result was that the failure stress 
on a bundle of  N fibres is approximately nor- 
mally distributed with mean and variance 

#* -- supy[1 - F ( y ; L ) ]  
y>0  

= y*[1 - F (y* ;  L)] (say) 

tr .2  = y * 2 F ( y * ;  L)[1 - F(y*; L ) ] / N  

(8) 

I f  F(y;  L) is as in Equation 3, then p* and tr* are 
given by 

It* = y r Q - I / ~ e  -I/Q 

a* = p*[(e 1/~-  1) /N]  1/2 (9) 

where, for notational simplicity, we have written 
Q in place of  0L- 

Let us illustrate this for L = 20 ram, the only 
gauge length for which both single fibre and dry 
bundie results are available. F rom Table I I I  
(Sample 3) we obtain YL = 2.65, Q = 5.5 from 
which we calculate (for N = 1000)/~* = 1.62, 
a* = 0.014#*. From Table I (Sample 6) we see 
that the mean bundle strength is 1.68 and we 
estimate the coefficient of  variation as 
0.062/.,/25 = 0.012, the latter value being com- 
pared with the theoretical 0.014. There seems to 
be remarkably good agreement. 

This good agreement, however, does not 
extend to other values of  L. By means of 
Equations 3 and 4, we calculate YL and 4, and 
hence #* and a*, for the other bundle lengths 
tested. These are summarized in Table V. Note 
that the values for L = 20mm differ slightly 
because the estimate is now based on all the 
single fibre data rather than just the L = 20 m m  
data. The theory does not give such good predic- 
tions for the other gauge lengths, and appears to 
underpredict the true strengths for L = 100 m m  
and L = 200mm. 

Modifications to the theory, and improved 
approximations, have been proposed [15, 19, 
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T A B L E  V Dry bundles 

Length Theoretical Theoretical Observed Observed 
of fibres mean, coefficient mean coefficient 
(mm) #* of variance, of variance 

~,/~* 

5 2.19 0.014 1.92 0.016 
20 1.71 0.014 1.68 0.015 

100 1.28 0.014 1.58 0.012 
200 1.14 0.014 1.38 0.007 

20], but these do not seem to account for the 
observed discrepancies. It is possible that the 
reason is the invalidity of  Equation 4, but this 
seems unlikely to account for such large dis- 
crepancies. The most likely explanation is that 
there is some physical interaction between the 
fibres which would invalidate the theory at 
longer gauge lengths. 

4. Impregnated and hybrid bundles 
4 . 1 .  T h e o r y  

We start our discussion of  composites with a 
short summary of  the theory in Smith et al. [7] 

Consider an array of  parallel fibres whose 
cross-sections form a square lattice (Fig. 1). We 
assume that the array exhibits local stress con- 
centrations which means, amongst other things, 
that the effect of  fibre failures is restricted to a 
small length of  the composite, measured in the 
direction of  the fibre axes. This behaviour is 
approximated, following Rosen [2], by assuming 
that there is an "ineffective length" 6 within 
which the failed fibre is unable to support load. 
Thus the composite is viewed as a system of 
statistically independent bundles, each of length 
6, in series (Fig. 2). 

This "chain-of-bundles" model automatically 
implies that the weakest-link hypothesis will 
hold in the following way: if Gu(y; L) is the 
probability that a bundle of  N fibres of  length 
L = rn6 fails under stress y, then we have 

GN(y; L) = 1 - -  [1 - -  GN(y; 6)] m (10) 

We therefore concentrate on the case L = 6, 

�9 Failed Fibre 

- -  0 Unfoited 

- - ~  Direcfion of 
load transfer 

Figure 1 Square lattice configuration. 

~L 

Load< 

<---5---> 

Figure 2 Chain-of-bundles model. 

> Load 

i.e. a single short bundle. The probability of at 
least one initial fibre failed under small stress y 
is approximately NF(y; 5), ignoring the 
possibility of  two or more initial failures. Con- 
sider the possibility that additional failures will 
occur as a result of  load redistribution. A failed 
fibre has four nearest neighbours, each of  which 
is under a stress Kly (say). The stress concen- 
tration factor, KI, is between 1 and 1.25, the 
latter occurring if all the load from the failed 
fibre is absorbed by its four nearest neighbours. 
Therefore the conditional probability that one 
of  the neighbours fails, given an initial failure, is 
approximately 4F(KIy; 6), and so the overall 
probability that there are two adjacent failures 
in the bundle is approximately 4NF(y; 6) 
F(Kly; 6). Under Equations 3 and 4 we have 
F(y;  6) ~- 6(y/yl)  ~ for small y, so this approxi- 
mation becomes 

4N62K~ ( y/y, )28 (11) 

This calculation may be extended to approxi- 
mate the probability of k adjacent failures in the 
bundle as 

k-I 
I-I (qiK~)N6k(Y/Y,) kQ (12) 
i=~ 

where qi is the number of  maximally stressed 
neighbours after i consecutive failures, and K~ is 
the stress concentration factor on each of those 
neighbours. 

Asymptotic results [7] suggest strongly that 
there is a critical value of  k, henceforth denoted 
k*, for which Equation 12 is a very good 
approximation to the bundle failure probability. 
A rough rule of thumb for determining this 
critical value is the relation 

Kky "~ y~ (k = k*) (13) 

since at this value the probability of  failure in the 
neighbours approaches 1. 

Combining Equations 10 and 12 and using the 
limit (1 -- x/my" --* e -x as m --* oo leads to 

GN(y; L) -- 1 -- exp [- -L(y /y*)  ~*] 
(14) 

3 2 6 5  



where 
O* = k*o 

y* = N - l / o  * q~/OK i 61/o*-l/Oy 1 
\ i = l  

(15) 

In particular, these relations imply that com- 
posite strengths should also follow a Weibull 
distribution but with increased shape parameter 
(and hence decreased coefficient of variation). 

Smith et al. [7] assumed a hexagonal array 
and developed detailed approximations which 
essentially agree with those described here. In 
this account we have not distinguished between 
impregnated and hybrid bundles but it is known, 
for example, that the matrix properties affect the 
ineffective length and the stress concentration 
factors, and this is one way in which the dif- 
ference might be manifested. 

4.2. Data ana lys is  
We first fit the model defined by Equations 3 and 
4 to single fibres and estimate the parameters 0 
and Yl, assuming the correctness of the model. 
Then, taking impregnated and hybrid bundles 
separately, we estimate the corresponding par- 
ameters, now denoted 0* and y*, for bundles 
(Table II). Our objective is to decide whether, 
allowing for experimental and sampling error, 
the results are consistent with Equation 15. 

For impregnated bundles, we estimate Y*/Yl to 
be 0.74 from Table II. The standard error may 
be calculated as approximately 0.02. Similarly, 
Q*/0 is estimated to be 3.34 with standard error 
approximately 0.24. 

We assume the values of qi and Kg derived 
in Smith et al. [7] from an artificial mechanical 
load-sharing rule (MLLS). A method of calcu- 
lating exact stress concentrations was given else- 
where [21], but explicit numerical results are 
available only for a few special cases involving 
small numbers of breaks The artificial MLLS is 
believed to overestimate the stress concentration 
factors, but not sufficiently to have a great effect 
on the anlysis. The other unknown constant in 
the theory is 6. We have taken 6 = 0.04mm 
following a rule of thumb that 6 is usually about 
five times the mean fibre diameter (here 8 #m), 
bu t  this is really just a guess and major source of 
uncertainty. 

For the impregnated bundles, we guess that 
k* is 3 or 4 and estimate y*/y~ from Equation 15 

to be 0.73 if k* = 3, or 0.67 if k* = 4. This is 
in very good agreement with the data-determined 
value 0.74. 

For hybrid bundles we do not get such good 
agreement. From Table II we estimate Y*/Yl = 
0.90, Q*/Q = 4.66, with standard errors 0.02 and 
0.06, respectiely. We guess that k* is 4 or 5 and 
estimate Y*/Yl from Equat ion 15 as 0.75 
(k* = 4) or 0.68 (k* = 5). These are well under 
the data-determined 0.90. Moreover, this assess- 
ment is not changed by making small adjust- 
ments to be assumed values of Ki and 6. 
For example, if we changed 6 (keeping every- 
thing else the same) we would have to take 
6 = 0.01mm to obtain agreement between 
theory and experiment. Since this is only just 
over the mean fibre diameter, it does not appear 
realistic. Therefore, we are forced to conclude 
that there is a real "hybrid effect" leading y* to 
be about 20 to 25% larger than would otherwise 
be the case. 

In this analysis we have assumed the validity 
of Equation 4. Our conclusions therefore 
depend very much on how we assess the dis- 
crepancies observed in Section 2. It appears 
from Table IV that the discrepancy resulting 
from Equation 4 is less than 5%; this is compar- 
able with the discrepancy observed in Equation 
15 for impregnated bundles, and much less than 
that for hybrid bundles. Thus, it appears that the 
discrepancies from Equation 4 are not signifi- 
cant when comparing single fibres with bundles, 
though they are significant when comparing 
fibres of different lengths. In view o f  this, we 
believe that our method of analysis is justified. 
Nevertheless, there remains the possibility that 
an alternative model may explain all the data 
better, and we shall propose one in Section 5. 

The hybrid effect has already been noted by 
Manders and Bader [10, 11]. They refer to earlier 
work suggesting the possible explanation that 
there is a change in the basic fracture mechanics: 
Yl for a fibre embedded in laminate may be 
larger than for a loose fibre. This could explain 
our results, but our results do not provide any 
confirmation that this is the correct explanation. 
There is also theoretical work on probabilistic 
models for hybrids; Fukuda [22] gives many 
references to earlier work, and an alternative 
recent approach is that of Harlow [23]. Fukuda 
and Harlow, however, considered a model in 
which the two constituent fibres are completely 
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Figure 3 Plots of log YL against log L for 
(a) single fibres, (b) dry bundles, (c) impreg- 
nated bundles and (d) hybrid bundles. 

mixed, whereas the hybrids being studied here 
consist of separate phases of carbon and glass. 

4.3. Comparison with graphical analysis 
Bader and Priest [9] analysed the data graphic- 
ally using two plotting techniques. The first was 
a standard Weibull probability plot, done 
separately for each sample. The second was a 
plot of log strength against log gauge length, 
which under the Weibull weakest-link model 
should be a straight line (see Fig. 3). In either 
case, the Weibull shape parameter may be esti- 
mated as the negative reciprocal of the slope of 
the plot. The first technique, probability plot- 
ting, produced results very similar to those in 
Table II. The second technique led to estimates 
ofQ = 6.1 for single fibres, O* = 27 for impreg- 
nated bundles and 45 for hybrid bundles. Thus 
there is good agreement with the other estimates 
for single fibres, but not for bundles. Bader and 
Priest concluded that "neither type of bundle 
meets the strength/length relationship implicit in 
the Weibull model", a conclusion consistent 
with the results of our likelihood ratio tests in 

Section 2. These results cast further doubt on 
the weakest-link relation, and reinforce the need 
to consider alternative models. 

5. Re-examination of the 
weakest-link hypothesis 

We have observed, on the basis of our statistical 
analysis, that the weakest-link hypothesis 
implicit in Equations 3 and 4 may not be valid 
for bundles, even though it appears plausible for 
single fibres. Watson [18] used both graphical 
and likelihood-based methods to compare a 
number of parametric statistical models. One 
plot is reproduced as Fig. 3, in which log Yt  is 
plotted against log L for each of the four types 
of material. The relationship is approximately 
linear, but with slope significantly different from 
- 1/e or - l/e* taken from Table II. This sug- 
gested the model 

GN(y;  L)  = 1 -- exp[ - -L=*(y / y* )  ~'] 

(16) 

Of course, if ~* -- l this reduces to the model 
considered previously. The results of fitting 
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T A B L E VI Parameter estimates and maximized log likelihoods under model G(y; L) = 1 - exp [ - L ' ( y / y o )  Q] 

Type c~ Y0 Q Maximum log T, = 21og(ll/12) 
likelihood 
(log/2) 

T 2 = 21og(12/lo) 

Single fibres 0.90 4.63 5.31 -227.6  15.0 
Impregnated bundles 0.58 3.25 16.83 29.6 12.4 
Hybrid bundles 0.48 4.02 23.92 93.4 0.7 

2.75 
15.6 
40.1 

Equation 16 are given in Table VI. Single fibres 
(writing ~ instead of c~*) are included in this 
in order to provide a better comparison with 
the results for bundles. Also give n in Table VI 
are the test statistics Tt = 21og(I]/12) and 
T2 = 21og(12/lo). These are the appropriate 
likelihood ratio statistics for (a) testing the model 
of Equation 16 against the alternative that QL 
and YL are arbitrary, and (b) testing the model of 
Equation 4 against Equation 16. The corre- 
sponding degrees of freedom are 5 and 1 respect- 
ively. Comparing these statistics with the per- 
centage points of the chi-square distribution 
(Z~.0.0~ = 15.1, )~2,0.01 "~- 6.63), we conclude that 
the improvement as we pass from Equations 4 to 
16 is not statistically significant in the case of 
single fibres (i.e. the improvement could be due 
to chance variation), but very definitely signifi- 
cant for both impregnated and hybrid bundles. 

If  Equation 16 holds, then for each L the 
Weibull shape parameter is Q*, as before. On the 
other hand, a log strength against log length plot 
will have slope -e*/Q*. Since e* is about 0.5, 
the shape parameter estimated from this plot 
will be about twice that estimated from the 
probability plots. This is consistent with the 
conclusions of Bader's and Priest's graphical 
analysis. 

We now attempt an explanation of how Equa- 
tion 16 might come about. Consider single fibres 
first. It is known that there is appreciable vari- 
ation in the diameters, and hence cross-sectional 
areas, of fibres. For a fibre with cross-sectional 
area fl, Equation 2 may be replaced by 

F(y ;  L ,  fl) = 1 -- e x p { - L f l [ ( y  -- /~)/Y0]'} 
(17) 

for constants #, Y0 and 7- From now on, we take 
p = 0. If  fl is random with probability density 
function (pdf) g(fl),  then we have 

F(y ;  L)  = 1 - f ;  exp  [ -  Lf l(  y/yo f ]g(fl) dfl 

= 1 - ~,[(L(y/yo) ~] (18) 
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where ~ denotes the Laplace transform of g. 
Equations 16 and 18 are consistent provided 

R(t) = e x p ( - c t  ~) t > 0 (19) 

for positive c and ~. In this case we have Q = ~7, 
Yl  = YO c- l~~ 

It is possible for Equation 19 to hold exactly, 
provided ~ < 1. This will be the case if fl has a 
positive stable distribution with index ~ ([24], 
Section XIII.6). This does not seem very plaus- 
ible, however. It would imply that fl has infinite 
mean and hence, in particular, may take on 
arbitrarily large values. Also, such a theory is 
not easily extended to bundles. More satisfac- 
tory results are obtained if we assume only that 
Equation 16 holds for large L (compared with 6) 
and hence that Equation 19 holds in some 
asymptotic sense as t ~ oo. The sense we shall 
consider is that 

t - ' log~(t)  --* - c  as t --* oo (20) 

De Bruijn's [25] Tauberian theorem (for back- 
ground information see Section 4.15 of [26]) 
shows that Equation 20 is equivalent to 

f l~[-log g(fl)]l-o __. co~O(1 _ ~)1-~ 

as fl --* 0 (21) 

Note that Equation 21 leaves g(fl) unrestricted 
for large ft. Thus we have the conclusion: if g(fl) 
satisfies Equation 21 then Equation 16 will hold 
(writing ~ in place of ~*) asymptotically for 
large L. 

The above accounts for single fibres. Now let 
us turn to bundles. We assume the chain-of- 
bundles model as before, and consider a single 
bundle of length 6. If fibre j has cross-section flj 
then the probability of at least one failure in the 
bundle, under stress y, is approximately 
Z j t f l j ( y / y o )  ~. The calculations of conditional 
probabilities of adjacent fibre failures will pro- 
ceed much as before with one important modifi- 
cation: the stress concentration factors are now 
random, since it is load rather than stress which 



is redistributed and the loads on individual fibres 
depend on their diameters. As an ad hoe method 
of taking this into account, we modify Equation 
12 to 

for some q. This reflects the notion that the local 
stress concentrations near fibre j will depend o n  

fls in some way, which we are taking to follow a 
power law. 

Assuming Equation 22 in place of Equation 
12, we obtain 

1 - Gu(y; L) 

where E stands for expectation with respect to 
the distribution of  f l  . . . .  , fiN. NOW, if 
Equation 21 holds for the density of  fl, then a 
similar relation holds for the density of  fl~. 
Reversing the steps which led from Equation 20 
to 21, if gl is the Laplace transform of  the 
density of  ff~, i.e. 

~ (t) = fo  exp ( -  tfl~)g(fl) dfl (24) 

then 

t ~*loggl(t) -* - c *  as t -~ ~ (25) 

where ~* = ~/[~ + q(1 - ~t)] and c* is related 
to c by 

(1  - ~*) (~*)=*/o-~*) (c,)l/0-=*) 

= (1 - ~)o~'/~l-~c l/(~-") (26) 

Combining Equations 23 and 25 leads to the 
asymptotic relation 

--log[1 -- Gu(y; L)] 

f k * -  1 \ t*  

Nc*L~*t~*(k*-l)~ i~= qiK~i ) 
x (y/yo) ~'*~*~ (27) 

which is consistent with Equation 16 for 

Q* = ~*k*7 

y ,  = N_l/o, ( k f i  1 "~-=*/e" \ ,=, q,K~i) 

x 6 =*/~ (c*)-l/Q'y o (28) 

We now examine the consequences of  this for 
the data. The parameters Y0 and c are related by 
Yl = Yo c-I/~ but are not separately identifiable, 
so there is no loss of  generality in taking c = 1. 
In the single fibre analysis we have c~ = 0.90, 
Y0 = 4.63, 0 = 5.3, 7 = 5.9. For  the impreg- 
nated bundles we have ~* = 0.58 and conse- 
quently estimate ~/ to be about 6. Also 
Q*/(~*7) = 4.9, suggesting k* is 5. Equation 28 
then leads us to predict Y*/Yl = 0.65, compared 
with the data-determined value of  0.70. For  the 
hybrid bundles the corresponding figures are 
~* = 0.48, t/ = 9, Q*/(~t*7) = 8.4 (suggesting 
k* = 8), predicted Y*/Yl = 0.69 compared with 
0.87. Again there is reasonable agreement for the 
impregnated bundles but a definite hybrid effect 
for the hybrid bundles. 

To summarize, the theory developed in this 
section provides a possible explanation of  the 
failure of the weakest-link hypothesis. The new 
theory predicts bundle strengths about as well as 
the old theory, with a definite but unexplained 
hybrid effect. 

It is only a conjecture that the variation of  
fibre diameter is important since we have n o t  

examined any data on this feature, but there is 
some independent evidence. Phoenix et al. [27] 
studied commercial Kevlar fibres in which they 
related strengths to the linear densities of  the 
fibres. Their results are not directly relevant in 
view of  the different material involved, but they 
did note significant variations in density from 
fibre to fibre, and argued that it was important 
to take this into account. 

6. Summary and conclusions 
In this paper we have employed the method of  
maximum likelihood for the estimation of  
Weibull parameters. The advantages of  maxi- 
mum likelihood over probability plotting tech- 
niques may be summarized as (i) complex stat- 
istical models m a y b e  fitted, (ii) standard errors 
are computable, and (iii) formal testing 
procedures are available for discriminating 
between models. On the other hand, graphical 
methods are useful for assessing model fit and 
for detecting anomalous observations, and a 
thorough statistical analysis should combine both 
graphical and more formal analytic techniques. 

In Sections 3 and 4, we compared the theor- 
etical and experimental results. The agreement 
was good for impregnated bundles and we 
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observed clear evidence of a positive "hybrid 
effect" in the hybrid bundles. An important issue 
in these comparisons is the validity of the 
weakest-link hypothesis. Both graphical and 
analytical tests cast doubt on this hypothesis, 
though from a predictive point of view the dis- 
crepancy did not seem too great. Further analy- 
sis in Section 5 led to an improved model, and 
we concluded by outlining a possible, but ten- 
tative, explanation for this new model. 
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